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Abstract—Solder paste printing position offset is a common
type of defective printed circuit boards (PCBs) printing, and
accurate position offset prediction helps to avoid the production
of defects, thus improving efficiency. The existing methods mainly
use the powerful nonlinear fitting ability of deep learning to
learn the variation pattern of solder paste printing quality to
achieve a good prediction. However, factories also focus on the
interpretability of the model, and existing methods are difficult
to give the basis for decisions, so there are still limitations in
the practical application. To solve this problem, we propose a
Support vector machine (SVM) approach, in which we manually
design 14 statistical features based on the original data, then the
resampling reduces the effect of data imbalance and achieves
PCB pad-level offset prediction. Finally, we verified about six-
day of real solder paste printing production data and achieved
good experimental results.

Index Terms—PCB, Feature Engineering, Time series predic-
tion

I. INTRODUCTION

With the booming development of the electronic informa-
tion industry [1], printed circuit boards (PCBs) as one of
the key parts of the electronic information industry [2] [3],
efficient and stable production is more and more important.

*This work was supported by the National Natural Science Foundation
of China (62173317, 62103124), Major Special Science and Technology
Project of Anhui, China (202104a05020064, 202003a07020009), Jingdong
Institute Open Fund of Suqian University (2022JDXM14). Corresponding
author: Yunbo Zhao (e-mail: ybzhao@ustc.edu.cn).

The solder paste printing process is a key process step in
PCB production [4] [5], which directly determines whether the
electrical function of the PCB is normal. Solder paste position
offset as a typical PCB printing defect type [6] [7] [8], if the
prediction of the solder paste position offset can be achieved,
then the position offset defect can be avoided by adjusting the
position compensation parameters of the solder paste printing
machine, which reduces the cost of defective product repair
and improves the production efficiency [9] [10].

Fig. 1: Models are available that can predict more accurately
whether a bad paste print offset has occurred, but it is
difficult to tell engineers the basis for their judgment.

There are relatively few researches for solder paste position
offset prediction [11] [12] [13]. Existing methods utilize deep
learning to fit fluctuating position offset time series, and use
reweighting to overcome the negative impact caused by far
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fewer bad position offsets than good products, to predict
whether the offset will be defective in the future period.
However, as shown in Fig. 1, these deep learning-based
approaches suffer from a shortage of interpretability, which
makes it difficult to effectively assist engineers in making
predictive judgments, and therefore has major limitations when
put into practical industrial production line applications.

To address the above problem, we propose a feature
engineering-based PCB solder paste position offset prediction
method, aiming to make the method more interpretable by
manually designing statistical features that can reflect the
characteristics of the offset time series. Specifically, since the
number of good products far exceeds the number of defective
products, the data is resampled to reduce the percentage of
good products. Then, 14 statistical metrics such as mean, vari-
ance, kurtosis, skewness, mean of absolute values, and index
of maximum absolute values are designed manually. Finally,
the manually designed features are nonlinearly transformed by
using a support vector machine with a kernel function [14], to
achieve the temporal prediction of the offset defect.

In summary, our main contributions are as follows.
1. The 14 hand-designed features are constructed for PCB

solder paste position offset prediction in industrial scenarios.
2. Our method is evaluated on about six-day of real solder

paste printing production data and the best experimental results
are achieved.

II. RELATED WORK

The specific process of solder paste printing is: first set the
pressure, speed, X-direction offset compensation, Y-direction
offset compensation, cleaning frequency, and other parameters
in the solder paste printing machine, and then add the solder
paste to the stencil through the squeegee, the mesh of the
stencil and the PCB to be printed in the position of one to
one correspondence, the solder paste through the mesh to
cover the corresponding position. After printing, the finished
product is inspected by Solder Paste Inspection (SPI). The
inspection items include the absolute value of the solder paste
area, the ratio between the area and the standard value, the
absolute height value, the ratio between the height and the
standard value, the absolute volume value, the ratio between
the volume and the standard value, the absolute value of the
X-direction offset, the ratio between the X-direction position
and the standard value, the absolute value of the Y-direction
offset and the ratio between the Y-direction position and the
standard value, etc. If any one of them does not meet the
requirements, the product will be judged as inferior.

Alelaumi et al. [15] measured the residual amount of solder
paste under the stencil and predicted the future residual amount
of solder paste on the stencil by LSTM [16] to assist engineers
in selecting the appropriate cleaning method. Wang et al. [17]
employs a combination of wavelet transform and LSTM to
determine the appropriate stencil cleaning method. Alelaumi
et al. [18] proposed a new multi-temporal intelligent anomaly
prediction (IAP) framework to improve the first pass rate
and reduce the rework cost in PCB assembly lines. In the

first stage, the highly autocorrelated solder paste printing pro-
cess is monitored using Random Forest-based Exponentially
Weighted Moving Average (RF-Based EWMA), and in the
second stage, Adaptive Boosting (AdaBoost) is used to achieve
accurate prediction of solder paste printing anomalies before
they occur. The above methods suffer from the disadvantage
of being difficult to explain the decision.

III. METHOD

The overall framework of the method is shown in Fig. 2.
Initially, we collect the SPI data of PCB to construct the time
series of solder paste printing position offset, then build the
feature engineering based on the solder paste printing position
offset time series, and finally use SVM to classify the feature
vector for prediction.

A. Preliminary

PCB Solder Paste Position Offset SamplePCB Solder Paste Position Offset SamplePCB Solder Paste Position Offset Sample: Each PCB posi-
tion offset detection sample O ∈ RM×2, there are M solder
paste offset detection results, the ith solder paste detection
results P i =

[
xi, yi

]
∈ R2,i = 1, 2, · · · ,M , containing two

indicators of X-direction relative offset and Y-direction relative
offset.

Solder Paste Position Offset Time SeriesSolder Paste Position Offset Time SeriesSolder Paste Position Offset Time Series: Construct
the historical offset time series in time order
O = [O1, O2, · · · , Ot]. Ot ∈ RM×2 represents the
PCB solder paste position offset samples at time t.

ProblemProblemProblem: Given a time series O of solder paste position
offsets of time length K, predict whether the offset of each
paste will exceed the threshold set by the factory in the next
T moments.

B. Data Processing

Using the sliding pane method, the time series of solder
paste position offsets O is divided with a history window
size of K, a step size of S for each translation, and a
prediction window size of T . This yields a historical win-
dow offset sequence Oht+K = [Ot+1, Ot+2, · · · , Ot+K ] ∈
RK×M×2, a predicted window offset sequence Opt+K+T =
[Ot+K+1, Ot+K+2, · · · , Ot+K+T ] ∈ RT×M×2. The above
historical window offset sequence Oht+K and predicted win-
dow offset sequence Opt+K+T are then decomposed to each
solder paste location, i.e., the ith solder paste historical win-
dow offset sequence P it+K =

[
P it+1, P

i
t+2, · · · , P it+K

]
∈

RK×2 and the i-th pad predicted window offset se-
quence P it+K+T =

[
P it+K+1, P

i
t+K+2, · · · , P it+K+T

]
∈

RK×2. The history window offset sequence is re-notated
as Oht+K =

[
P 1
t+K , P

2
t+K , · · · , PMt+K

]
. The prediction

window offset sequence is re-notated as Opt+K+T =[
P 1
t+K+T , P

2
t+K+T , · · · , PMt+K+T

]
. When the i-th solder paste

prediction window offset sequence P it+K+T has a bad offset
in any direction at any moment, then P it+K corresponds to a
label of 1, otherwise, the label is -1. Considering that there are
far more good products than defective products, the proportion
of good products in the training set is reduced by resampling
and the proportion of defective products is increased.
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Fig. 2: Overall framework of the methodology.

C. Manual feature construction

TABLE I: FEATURE ENGINEERING DETAILS

Index Feature Index Feature

1 Number of peaks 8
Index of the
largest absolute
value

2 Skewness 9 root of the mean
square

3 Kurtosis 10 Mean of first-
order difference

4 Mean of absolute values 11
Mean of first
order absolute
value difference

5 Mean 12
Mean value of
second order dif-
ference

6 Standard deviation 13 Timing Data
Complexity

7 Maximum absolute value 14 Number of times
through the mean

The ith sequence of solder paste history window
offsets is denoted as P it+K =

[
Xi
t+K , Y

i
t+K

]
=[

xit+1, x
i
t+2, · · · , xit+K ‖ yit+1, y

i
t+2, · · · , yit+K

]
, ‖ means

connected. The following 14 statistical features as shown in
Tab. 1 are calculated for Xi

t+K .
Peakx,it+K is the number of peaks, i.e. the number of

occurrences where xit+i < xit+i+1 and xit+i+1 > xit+i+2, or
xit+i > xit+i+1 and xit+i+1 < xit+i+2. It reflects the degree of
time series dithering.

Skewness is a measure of the direction and degree of
skewness of a statistical distribution and is a numerical charac-
teristic of the degree of asymmetry of a statistical distribution.

Skewx,it+K =
1

K

t+K∑
j=t+1

(
xij − µ
σ

)3

, (1)

where µ is the mean of Xi
t+K and σ is the variance of Xi

t+K .
Kurtosis Kurtx,it+K is a measure of the height of the peak

at the mean of the statistical distribution and reflects the

sharpness of the peak.

Kurtx,it+K =
1

K

t+K∑
j=t+1

(
xij − µ
σ

)4

, (2)

where µ is the mean of Xi
t+K and σ is the variance of Xi

t+K .
The mean value Meanx,it+K describes the concentrated trend

of the time series of the solder paste position offset.

Meanx,it+K =
1

K

t+K∑
j=t+1

xij . (3)

Since the positivity and negativity of the offset represent the
direction of the offset, the mean value of the absolute value
Absmean

x,i
t+K is designed to avoid the situation where the mean

value is 0, but the offset degree is huge.

Absmean
x,i
t+K =

1

K

t+K∑
j=t+1

∣∣xij∣∣ , (4)

where
∣∣xij∣∣ denotes the absolute value of xij .

The standard deviation Stdx,it+K reflects the degree of dis-
persion in the degree of offset of the solder paste position at
different moments.

Stdx,it+K =

√√√√ 1

K

t+K∑
j=t+1

(
xij − µ

)2
, (5)

where µ is the mean value of Xi
t+K .

The maximum absolute value Absmax
x,i
t+K characterizes the

maximum paste position offset.

Absmax
x,i
t+K =Max

(∣∣Xi
t+K

∣∣) . (6)

The index of the maximum absolute value Argmax
x,i
t+K

characterizes the impact of the maximum degree of paste
position offset on future moments.

Argmax
x,i
t+K = arg

(
Max

(∣∣Xi
t+K

∣∣)) . (7)

where arg denotes the relative index of the get in the sequence.

RMSmax
x,i
t+K =

√√√√ 1

K

t+K∑
j=t+1

(
xij
)2
. (8)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2023 at 01:10:48 UTC from IEEE Xplore.  Restrictions apply. 



The difference is used to analyze the smoothness of the time
series of solder paste position offsets.

Diffx,it+K =
1

K − 1

t+K−1∑
j=t+1

(x
i
j+1 − x

i
j). (9)

Absdiff
x,i
t+K =

1

K − 1

t+K−1∑
j=t+1

(|xij+1

∣∣− ∣∣xij∣∣). (10)

Secdiff
x,i
t+K =

1

K − 2

t+K−2∑
j=t+1

(x
i
j+1 − 2x

i

j+1
+ xij). (11)

The time series data complexity Cidx,it+K is used to evaluate
the complexity of the time series, the more complex the series
has more valleys and peaks.

Cidx,it+K =

√√√√ 1

K − 1

t+K−1∑
j=t+1

(x
i
j+1 − xij)

2
. (12)

Zx,it+K is the number of over-averages, i.e., the number of
occurrences where xit+i < µ and xit+i+1 > µ, or xit+i > µ
and xit+i+1 < µ.

The above 14 statistical metrics are repeated for Y it+K .
The final vector F it+k consisting of 28 statistical metrics is
obtained.

D. Model Construction

Construct a support vector machine. Solve the following
equations.

min
w,b,ξ

1

2
||w||2 + C

l∑
i=1

snξn

s.t. yi
(
w · ϕ

(
F it+k

)
+ b
)
≥ 1− ξn,

(13)

where ξn ≥ 0, ξn denotes the slack of the nth sample. ϕ
denotes the kernel function, C denotes the penalty term for
misclassification, and sn denotes the classification weight of
the nth sample. Here C is set to 1000. Since resampling was
performed, the positive and negative samples have the same
class weight. The final SVM is obtained.

IV. EXPERIMENT

A. Dataset

The data was collected from a laptop production line over
six days. Each PCB has 3152 solder paste printing positions,
and we use the X-direction relative offset and Y-direction
relative offset as the raw data. Set sliding window K = 20,
sliding step S = 1, and prediction window T = 20 to obtain
a total of 11,352 sequences of solder paste position offsets.
Since the number of good products far exceeds the number
of defective products, 10% of the good product feature data
and 50% of the defective product feature data are randomly
selected to form the training set, and 10% of the good product
feature data and the remaining defective product feature data
are randomly selected to form the test set.

B. Experimental settings

1) Experiment Environment: Our method runs on a high-
performance server, the server details are shown in Tab. II.

TABLE II: EXPERIMENTAL ENVIRONMENT
CONFIGURATION

Configuration Parameter Description
OS Ubuntu 18.04.5 LTS

RAM 32GiB
CPU i7-10700K

2) Metrics: Considering that the research is a classification
problem, we choose accuracy, recall, precision, and F1 score
as evaluation metrics. Using the defective products as the
positive class, the recall rate reflects the proportion of the true
positive class samples that are correctly classified. Accuracy
reflects the percentage of samples predicted to be defective
that is indeed defective. The F1 score is a trade-off between
recall and precision.

F1 =
2 ·Recall · Precision
Recall + Precision

. (14)

3) Baseline: To show the superiority of the method, we
choose the following methods to compare.

Random Forest [19]: The set of multiple decision trees are
used, and the output of multiple decision trees is subjected to
majority voting thus outputting a most likely prediction. The
experiment is set up with 100 decision trees and the impurity
is calculated using the Gini coefficient.

Logistic regression [20]: L2 regularization is chosen, with
a regularization factor of 1.

Multi-layer perception machine [21]: The activation func-
tion is chosen Relu, the optimizer is chosen SGD, the momen-
tum is 0.9, the L2 regularization is chosen, the regularization
factor is 0.0001, and the learning rate is 0.001.

C. Experimental Results

Each model is repeated five times for the test, the experi-
mental results are averaged, and the standard deviation of the
results of the five experiments is indicated in (.), which reflects
the stability of the model, as shown in the following Tab. III.

Since there are far more good products than bad solder paste
printing position offsets, the model can achieve an accuracy
of 0.999 simply by predicting most of the time series as
good products, but this does not reflect the true prediction
capability of the model. The recall, precision, and F1 score are
more indicative of the model’s ability to discriminate against
defective solder paste printing positions. It can be seen that
SVM is substantially ahead of other methods in terms of recall,
and F1 score, and shows higher stability in five repetition tests.
All four methods maintain a high precision rate, proving that
the feature engineering we construct can indeed reflect the
different characteristics between good and defective products.

Fig. 3 shows the visualization of the SVM prediction
results as a confusion matrix. It demonstrates the excellent
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TABLE III: COMPARISON OF THE EXPERIMENTAL RESULTS

Method Accuracy Precision Recall F1
Random Forest 0.999((1.31× 10−4) 0.967(0.005)0.967(0.005)0.967(0.005) 0.748(0.072) 0.841(0.042)

Logistic regression 0.999(2.75× 10−5) 0.660(0.009) 0.515(0.013) 0.578(0.010)
MLP 0.999(1.19× 10−5) 0.780(0.10) 0.718(0.012) 0.748(0.004)
SVM 0.999(4.36× 10−6)0.999(4.36× 10−6)0.999(4.36× 10−6) 0.939(0.003) 0.955(0.002)0.955(0.002)0.955(0.002) 0.947(0.001)0.947(0.001)0.947(0.001)

Fig. 3: Confusion matrix of SVM classification percentage
results.

Fig. 4: Correlation chart of model performance with positive
class weights.

performance of our method. Fig. 4 shows the comparison
of model performance under different weights of defective
products. It can be seen that although increasing the defective
product weight will slowly increase the recall rate, it will
also cause a significant decrease in the precision rate. This
suggests that increasing the defect weights causes the model
to simply predict more good products as defects, which leads
to a gradual decrease in the F1 score, which is an indicator
of the model’s overall performance.

To achieve the interpretability of the model decisions, we
analyze the 14 features of the manual design using random
forest, as shown in Fig. 5. This can explain the basis on which
our model makes its decisions. The overall 14 manual features

Fig. 5: Visualization of the influence weight of different
features on classification results.

in the Y-direction can be found to be more important than the
14 manual features in the X-direction because there are more
poor offsets in the Y-direction. The maximum absolute value
of the paste position offset significantly affects the results,
while the mean, standard deviation, root mean square, and
mean of the absolute values are also major influencing factors,
proving the validity and interpretability of the manual design
features.

CONCLUSION

In this paper, we propose a feature engineering-based
approach for solder paste printing position offset anomaly
prediction. By comparing with several methods, the better
evaluation metrics prove the superiority of our method. In
future work, we will predict position offsets for anomaly
detection, as specific offsets can facilitate engineers to adjust
machine parameters.
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